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Abstract

A method is presented for constructing replicated services that retain their availability and
integrity despite several servers and clients being corrupted by an intruder, in addition to others

failing benignly. More precisely, a service is replicated by n servers in such a way that a correct
client will accept a correct server's response if, for some prespecified parameter k, at least k

servers are correct and fewer than k servers are corrupt. The issue of maintaining causality
among client requests is also addressed. A security breach resulting from an intruder's ability to

effect a violation of causality in the sequence of requests processed by the service is illustrated.

An approach to counter this problem is proposed that requires fewer than k servers to be corrupt

and that is live if at least k + 6 servers are correct, where b is the assumed maximum total number

of corrupt servers in any system run. An important and novel feature of these schemes is that

the client need not be able to identify or authenticate even a single server. Instead, the client is

required only to possess at most two public keys for the service. The practicality of these schemes
is illustrated through a discussion of several issues pertinent to their implementation and use, and
their intended role in a secure version of the Isis system is also described.

*This work was supported by the Defense Advanced Research Projects Agency (DoD) under DARPA/NASA sub-
contract NAG2-593 administered by the NASA Ames Research Center, by grants from GTE, IBM, and Siemens, Inc.,
and by a National Science Foundation Graduate Fellowship. Any opinions, conclusions or recommendations expressed
in this document are those of the authors and do not necessarily reflect the views, policies or decisions of the National
Science Foundation or the Department of Defense.



1 Introduction

Distributed systems are often structured in terms of clients and services. A service exports a set of

commands, which clients invoke by issuing requests to the service. After executing a command, the

service may return an appropriate response to the client that invoked the command. In the simplest

case, the service is implemented by only one server. If this server is not sufficiently immune to failure,

however, then the service must be replicated.

In hostile environments, replication introduces other problems. For instance, it is often more

difficult, or at least requires more resources, to protect many servers from corruption by an intruder

than it is to protect only a single server. A replicated service should thus be designed to remain

available and correct despite several servers being corrupted by an intruder (in addition to others

failing benignly). One way to do this employs the state machine approach [25] to replicating the

service, so that each server individually computes the response and sends it to the client. If the

client authenticates the response from each server and accepts the response, if any, sent by a majority

of servers, then it obtains the correct response if a majority of servers are correct. Such schemes,

however, require that the client be able to identify and authenticate the servers that comprise the

service. This may be difficult if the set of servers can change over time or if there is no trustworthy

source from which the client can obtain the identities and authentication information of the servers.

In this paper we propose a combined solution to these problems using the state machine ap-

proach. The service is implemented by n servers in such a way that for some prespecified parameter

k, a correct client accepts a response from the service provided that at least k servers are correct.

Moreover, if fewer than k servers are corrupt, any response accepted at a correct client is guaranteed

to have been computed by a correct server. An important feature of this scheme is that the client

possesses exactly one public key for the service (as opposed to, e.g., one for each server) and can

treat the service as a single object for the purposes of authentication. This enhances application

modularity and significantly simplifies the service interface for clients. We emphasize that the client

need not know the identity of even a single server to authenticate the response of the service.

Even in a system with fewer than k corrupt servers, at least k correct servers, and the above

guarantees, correct clients may accept improper responses from the service if an intruder has caused

the correct servers to process improper requests or to process requests in an incorrect order. In this

paper we also discuss this issue. We focus on an attack in which an intruder effects and exploits a

violation of causality in the sequence of requests processed by the service. (While similar to an attack

described in [22], this attack is more severe because it involves corrupt servers.) We also propose a

way to avoid this attack that requires that the client possess at most one additional public key for

the service and that fewer than k servers be corrupt. And, this solution is live if at least k + b servern

are correct, where b is the assumed maximum total number of corruptions suffered by servers in any

system run.
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The above discussion may be evocative of the large body of literature that provides solutions to

various distributed computing problems in models where Byzantine failures can occur but authen-

tication is possible (see, e.g., (19]). Nevertheless, our work has a somewhat different emphasis: we

employ novel cryptographic techniques to achieve the aforementioned results, and one contribution of

our work is the demonstration of the practical value of these techniques. Our approach thus stands in

contrast to the body of literature just described, which typically assumes only a conventional digital

signature scheme.

While we have not yet implemented the protocols described in this paper, we intend to use them

in a secure version of the Isis distributed programming toolkit [22]. (See appendix B.) The Isis system

provides process group and reliable group multicast abstractions that facilitate the construction of

high-performance, fault-tolerant applications [1, 2]. Several services that will be provided in the

secure version of Isis, including a secure name service and a secure public key authentication service,

could be implemented using the techniques described here. And, these techniques may be a useful

tool to support for application programmers. We devote one section of this paper to a discussion

of several practical issues that arise in such an implementation and use of our protocols, as well as

ways to optimize our methods in practice.

The remainder of this paper is structured as follows. In section 2 we give a brief overview of

the state machine approach to replication; for more detail, the reader should see [25]. In section 3

we enumerate our assumptions about the system. In section 4 we present a method of implementing

services that provides the availability and integrity guarantees outlined above. In section 5, we

discuss the importance of maintaining causality among client requests and a method to counter an

intruder's attempts to exploit violations of causality. Section 6 discusses several issues pertinent to

the implementation of our protocols. We outline related work in section 7 and conclude in section 8.

2 State machine replication

A state machine consists of a set of state variables and exports a set of (possibly parameterized)

commands. The state variables encode the state of the state machine, and the commands transform

that state. A client of the state machine invokes a command by issuing a request to the state

machine. Each command is implemented by a deterministic program and is executed atomically

with respect to other commands. Commands should be executed by a state machine in an order

that is consistent with Lamport's causality relation [18]. That is, two requests from the same client

should be processed in the order they were issued, and if one request could have caused another from

a different client, then a state machine receiving both should process the former first. Execution of

each request results in some response (i.e., output), which we assume is returned to the cienL that

issued the request. Responses of a state machine are completely determined by its initial state and

the sequence of requests it processes.
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State machine replication is a general method of implementing a fault-tolerant service by si-

multaneously employing many state machine servers and coordinating client interactions with them.

If all servers are initialized to the same state, and if all correct servers process the same sequence

of requests, then all correct servers will give the same response to any given request. By prop-

erly combining the responses of the servers, where "properly" depends on the type of failures being

considered, the response of the fault-tolerant service is obtained.

3 The system model

Our system consists of a set of principals, n of which are servers and the remainder of which are

clients. All principals communicate exclusively via a network of arbitrary topology. A principal is

correct in a run of the system if it always satisfies its specification. A principal may fail in an arbitrary

manner, limited only by the (conjectured) properties of the cryptosystems and signature schemes we

employ. Our failure model is thus most similar to "Byzantine with message authentication."

In order to capture the notions of an "accidental" failure versus a purposeful corruption by

an intruder, we partition the faulty principals into two sets: the honest principals and the corrupt

principals. Formally, the only property that this partitioning must have is that any principal that

ever suffers "truly Byzantine" failures-i.e., failures that cannot be classified as fail-stop, crash,

omission, or timing failures [4J-must be classified as corrupt. In a given system run, we let corrupt

and correct (in slanted font) denote the numbers of corrupt and correct servers, respectively. We

assume that there exist known constants t and b such that b < t < n and in any system run,

corrupt < b and correct > n - t. That is, in any system run at most t servers fail, and of these at

most b are "malicious."

Although principals fail as a single unit, it is convenient to view each principal as consisting of

logically separate modules. (See figure 1.) More precisely, each server consists of a communication

module, a coordination module, and an application module. The communication module is closest to

the network, the application module is furthest, and the coordination module lies in between. The

application module of a server is simply a state machine as described in section 2. The coordination

module delivers a request (c, in), from client c and with contents m, to that state machine by calling

deliver((c, m)), which places (c, m) at the end of a list of requests to be processed that is available

to be read by the state machine. We assume that calls to deliver are made strictly sequentially, in

the sense that a call to deliver is not made until all previous calls to deliver have returned. Using

the primitives supplied by the communication module, the coordination module also implements a

respond primitive respond(c, m) by which the state machine can send a response m to a client c.

The communication module implements two communication primitives for use by the coordina-

tion module. The first is a send primitive send(c, m) by which the coordination module can send

a message to a client; this is presumably used in the implementation of respond(c, m) and will not

4



Figure 1: Structure of principals

(a) Server (b) Client

Application Module

trespond(c, m)
Seiiver((c, m .......... .

Coordination Module Application Module

abcast(m) send(c, m) . request(m)
receive((s, m)) ........... ... accept(m)...........

Communication Module Communication Module

Network Network

be used further in this paper. The second is an atomic broadcast primitive abcast(m) by which the

coordination module of a server s can broadcast a message (s, m) to the set of servers. A server's

communication module receives a message (s, m), from server s and with contents m, by calling

receive((s, m)), which places (a, m) at the end of a list of received messages that is available to be

read by the coordination module. Messages are received only from servers, according to an atomic

broadcast protocol R that satisfies the following specification.

Receipt Atomicity: A message is either received at all correct servers exactly once or is never

received at any correct server.

Receipt Validity: A correct server receives a message from a correct or honest server s only if s

previously broadcast that message. Moreover, if a correct server broadcasts a message, it will

eventually be received at all correct servers.

Receipt Order: A correct server receives message (s, m) before another message (s', m ') iff all correct

servers do. That is, all correct servers receive the same sequence of messages.

Receipt Consistency: The sequence of messages received by an honest server is a prefix of the

sequence of messages received by a correct server.1

Options for implementing atomic broadcast are discussed in section 6; here we simply note that

there already exist protocols in the literature that satisfy this specification in various models and for
11t is shown in (13] that even in a synchronous system, any atomic broadcast protocol that is tolerant of omission

failures and that guarantees consistency with respect to faulty principals requires a majority of correct principals.
Thus, if honest is defined to include those servers that suffer omission failures, the results of this paper require R > 2t.
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various definitions of honest. Our protocols do not rely upon any bounds on message transmission

times or the execution speeds of principals, and so the only such bounds required for our results, if

any, are those required by the particular atomic broadcast protocol used.

A client consists of only two modules, an application module and a communication module. The
application module of a client c is some client program that can issue a request (c, m) to the service

by calling request(m). The communication module of the client implements this primitive, e.g., by
signing and broadcasting (c, m) to the entire network. Assuming that each request from a correct

client eventually reaches some correct server, servers can easily implement an atomic broadcast pro-

tocol for client requests by, e.g., forwarding requests to the other servers via abcast and determining
the delivery order of requests by their order of receipt at correct servers. That is, we assume that

servers also implement a protocol, called D, that satisfies the following properties.

Delivery Atomicity: A request is either delivered at all correct servers exactly once or is never

delivered at any correct server.

Delivery Validity: A correct server delivers a request from a correct or honest client c only if c

previously issued that request. Moreover, if a correct client issues a request, it will eventually

be delivered at all correct servers.

Delivery Order. A correct server delivers a request (c, m) before another request (c', m') iff all

correct servers do. That is, all correct servers deliver the same sequence of requests.

Delivery Consistency- The sequence of requests delivered by an honest server is a prefix of the

sequence of requests delivered by a correct server.

Assuming that each server is initialized to the same state, these properties imply that all correct

and honest servers will produce the same response (or no response) to a given request. The commu-
nication module of a client accepts a response m for the application module by calling accept(m).

4 Preserving integrity and availability

Recall from section 1 that our first goal is a service that satisfies the following properties, for some

prespecified k.

Integrity: If corrupt < k, then the response accepted at a correct client, if any, is that computed

by a correct server.

Availability: If correct > k, then a correct client will accept a response from the service.

We satisfy these requirements by replacing the respond(c, m) and accept(m) routines of servers

and clients, respectively, with two new routines, respond'(c, m) and accept'(m), that will ensure these
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properties. Therefore, the new structures of principals will be as pictured in figure 2. Although we

have replaced the respond routine with respond' at the interface provided to the application module

of each server, we assume that respond is still available for execution by the coordination module.

Similarly, we assume that accept is still available to the communication module of each client.

Figure 2: New structure of principals

(a) Server (b) Client

Application Module

t respond'(c, m)
............. ......

Coordination Module Application Module
. . abcast(m) send(cm) .. request(m)
* r. . . ... .' *' * ** .... t ce *'i m ... .. ... * ... .. .

receive((s, m) accept'(m)

Communication Module Communication Module

Network Network

Threshold signature schemes

The respond' routines at the different servers will employ a (k, n)-threshold signature scheme. A

(k, n)-threshold signature scheme is, informally, a method of generating a public key and n shares

of the corresponding private key in such a way that for any message m, each share can be used to

produce a partial result from m, where any k of these partial results can be combined into a signature

for m that can be verified with the public key. Moreover, knowledge of k shares should be necessary

to sign m, in the sense that without the private key it should be computationally infeasible to (i)

create a signature for m without k partial results for m, (ii) compute a partial result for m without

the corresponding share, or (iii) compute a share or the private key without k other shares.

Cryptanalytic attacks against threshold signature schemes differ from those against their con-

ventional counterparts in that the cryptanalyst may possess some number of shares and be able

to acquire partial results, in addition to message/signature pairs. For our purposes, we will say,

informally, that a (k, n)-threshold signature scheme is secure if it satisfies the following properties:

1.. Possession of only k - 1 or fewer shares and of partial results for various messages does not

facilitate signing new messages. That is, if a possessor of such information can sign a new

message, then it could also sign that message without knowledge of any shares or partial
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results for any messages. This property, which is formalized in [11], says that the threshold

signature scheme is as secure as the conventional signature scheme on which it is built.

2. The conventional signature scheme on which the threshold signature scheme is built prevents

selective forgery under known signature attacks. That is, a cryptanalyst cannot manage to

sign messages of its choice even though it can see signatures corresponding to various other

messages (but not corresponding to messages of its choice, as would be possible in a chosen

message attack).

This definition is in accordance with the security of all implementations of threshold signature

schemes thus far proposed, in the sense that all proposed implementations are based upon con-

ventional signature schemes that are known to be vulnerable to chosen message attacks.

Our respond' routine is not dependent upon any particular implementation of a (k, n)-threshold

signature scheme, although for concreteness we outline the necessary details of an implementation

proposed in [7]. The scheme begins with an RSA [24] public key (e, N) and private key d, where N

is the product of two safe primes and the Carmichael function A is used in place of Euler's totient

function 0 to create e from d. That is, ed =_1 mod A(N), where A(N) is the smallest positive integer

such that xA(N) = 1 mod N for all z E Z;I. The n shares {Ki}1 <i<n are generated from d in such a
way that for any set T C {l,...,n} of size k, 2iE7(Ki Pi,) - - 1 mod A(N), where the integers

{Pi,T}iET are fixed a priori and public. 2 So, by defining the i-th partial result for a message m to be

amj - inKi mod N, it follows that for any T C {1,..., n} of size k, Am,T m-fl=i"eT(am,,)Pi.T mo, N

is the proper RSA signature m d mod N for m.n Variations of this scheme have been proved to be

as secure as RSA, in the sense of property 1 above [11].

The protocol

Suppose that a public key (e, N) and corresponding shares {Ki},<i<n %re created as above and

distributed so that for all i, 1 5 i < n, server si is the sole possessor of Ki and any principal can

reliably obtain (e, N), the public key of the ser Ice. We do not discuss methods for distributing this

information, although we note that all public key systems require similar steps. The (information

for computing the) integers Pi,T for all i and T can be "hardwired" into the implementation of the

servers. Then, the respond(c, m) and accept'(m) routines are implemented as follows.

2 Each of the integers pi,r for all i and T can be computed from a fixed set of n integers, each of binary length

O(log n) (if so chosen), with 0(n) integer multiplications and additions.
'For reasons of security and efficiency, it is advisable that a meusage digestof the message be signed, as opposed to

the message itself [5].
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Routine respond'(c, m) at server si:

I. Execute abcast(am,,i).

2. Wait to receive a set {amjjET, ITI = k, of partial results for m such that An,T is a valid

signature for m.

3. Execute respond(c, (m, Am,T)).

Routine accept'(m) at client c:

1. If m is not of the form (m', S), then return to the calling routine.

2. If S is a valid signature for m' and m' is a valid response (i.e., is of the right form), then

execute accept( M). 4

Claim 1 If the threshold signature scheme is secure, then this trotocol satisfies Integrity.

Proof. Because each correct and honest server produces partial results only for responses that it

computes, the assumptions that corrupt < k and that the threshold signature scheme is secure imply

that the corrupt servers can generate signatures only for responses computed by a correct server

(and possibly for other, presumably useless, messages). So, the corrupt servers can neither directly

generate an improper response that a client will accept nor create signatures for arbitrary messages

of their choice in order to perform chosen message attacks against the signature scheme. Therefore,

any response that is accepted by a correct client must have been computed by a correct server. 0

Claim 2 This protocol satisfies Availability.

Proof. Suppose that correct > k. By Receipt Validity of X/, all correct servers eventually receive

partial results from k correct servers, and so each correct server can compute a proper signature on

its response. 0

Discussion

In terms of communication complexity, in a failure-free run the replacement of respond with respond'

results in an additional n executions of 1Z (i.e., abcast), which can be executed concurrently. There-

fore, the entire protocol that begins when a client issues a request and ends when it accepts a response

consists of three communication "phases" that must be executed roughly sequentially: the request

by the client (one execution of V), the dissemination of partial results (n executions of 1), and the

sending of the responses (ns executions of respond). This protocol can be optimized in at least two

ways, first by noticing that a client needs to receive only one correctly signed response for Avail-

ability to be satisfied. This implies that only min{t + 1, n - k + 1) servers need to be designated

4Here we have omitted consideration of sevt .al forms of attack, such as replay attacks [26J.
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to respond to any given request. In addition, the partial results for the signature of the response
need to bu broad;cast only to that set of servers. The set of servers designated to respond to a given
request can be fixed in advance or determined dynamically. A second optimization is for servers
to communicate partd results by a reliable broadcast protocol, obtained by removing the Receipt
Order requirement and replacing "sequence" and "prefix" with "set" and "subset," respectively, in
the Receipt Consistency requirement of atomic broadcast. Since reliable broadcast is weaker, it can
be implemented at least as efficiently. Reliable broadcast can be used because the order in which
patial results are received by servers is not important in this protocol.

In theory, the most computationally expensive part of the protocol is step 2 of the respond'
routine, in which the server sodts through the partial results it receives until it finds a T of size k
such that A,,,.T is a valid signature. The server must examine at most only the first h = min{n, k + b}
partial results received (from h unique servers), and at most (h) subsets of partial results, because in
h partial resuits are at least k correct partial results (if correct > k). While this could be expensive if
h is large and k ; h/2, the expected search time should be small in the common case in most systems,
i.e., when n and corrupt are small.' A minor optimization is to have a server always include its own
index in T when computing Am,T, and heuristics, such as using partial results from a combination
of servers that previously worked, could also be used to reduce the search time in practice. Further
optimizations, one of which is discussed in appendix A, are a topic of ongoing research. However, we
emphasize that in most systems, the search time for a valid signature will probably be dominated
by other costs and should not be a limiting factor in the performance of our protocols. Accordingly,
we view further optimizations of this search to be primarily of theoretical interest.

In this scheme, each server must know O(n log n) bits of public information (in order to compute
the Pi,T's; see footnote 2), in addition to the public key for the service and its share of the private
key. Each client needs to know only the public key of the service.

5 Preserving input causality

One guarantee provided in the previous section is that if corrupt < k, then the response accepted at a
correct client will be the tesponse computed by a correct server. Even the output of a correct server,
though, may not reflect the way things "should be" if an intruder has caused the service to deliver
improper requests or to deliver requests in an incorrect order. In general, ensuring proper responses
from a correct server requires access control, because responses computed from state variables that
can be written (directly or indirectly) by corrupt clients cannot be trusted. Access control is an
entire research area in itself and will not be discussed further here.

5 For example, in typical Isis applications, a service might be implemented by three to five servers, but rarely more.
For such services this search would be insignificant.
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In this section we address the issue of ensuring that requests are delivered in a correct order by

correct servers. Because we assume an atomic broadcast protocol V to disseminate client requests,

we concern ourselves only with the requirement that correct servers deliver requests in an order

consistent with causality (see section 2). A common method of preserving causality among client

requests is for each client to refrain from sending any messages between the time it issues a request

to the service and the time at which the request is delivered at some honest or correct server [25].

Consider the case, however, in which a correct client issues a request to the service, and after receiving
the request, a corrupt server sends a message to a corrupt client. If the corrupt client subsequently

issues a request, then there is a causal relationship between the two requests. However, it is not clear

how this relationship can be detected by correct servers.

To illustrate why this may be important, we borrow an example from [22]: suppose that the

service of interest is a trading service that trades stocks and that a client issues a request to purchase
shares of stock through this service. After discovering the intended purchase, a corrupt server could

collude with a corrupt client as described above to issue a request for the same stock to the service.

If the correct servers deliver this request before that of the correct client, this request may adjust the

apparent demand for the stock and raise the price offered to the correct client. Thus, by allowing

the causally subsequent request of the corrupt client to be delivered before the request of the correct

client, a type of "insider trading" may occur. Moreover, access controls alone cannot naturally avoid
this problem, as the intent is that any client can request to purchase stock at any time.

In the remainder of this section, we present new request and delivery routines, respectively

denoted request'(m) and deliver'((c, m)), that replace request(m) and deliver((c, m)). Therefore, if

used with the respond' and accept' routines of section 4, principals would be structured as in figure

3. These new routines protect correct clients from the type of attack described above, in the sense

that any request based on information obtained from a correct client's request (c, m) can be delivered
at correct servers only after (c, m). As before, we will use deliver in our implementation of deliver',

and similarly for request and request.

In the implementation of request'(m), the correct client c encrypts m under a public encryption

key of the service before issuing (c, m). Then, c is provided the following guarantee. The reader

should verify that this guarantee prevents the aforementioned problem, provided that corrupt < k.

(This k can be chosen independently of that in section 4.)

Causality: If corrupt < k, then if some request is (i) issued after m is decrypted anywhere (other
than c), and (ii) delivered at a correct server, then that request is delivered at all correct servers

after (c, m).

In addition to satisfying Causality, request' and deliver' must also ensure that client requests are

delivered according to the specification of atomic broadcast-i.e., that Delivery Atomicity, Delivery

'We do not consider traffc anelypi. attacks [26] or attacks that exploit the maieabifity of the cryptosystem (6).
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Figure 3: New structure of principals

(a) Server (b) Client

Application Module

t. respond'(c, rn)
deliver '( (C M) ) ...... 

... . .
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Validity, Delivery Order, and Delivery Consistency still hold. The implementations of requeste and

deliver' that we propose satisfy all but the second half of Delivery Validity with no further assump-

tions; to ensure that a correct client's request will eventually be delivered at all correct servers, we

require correct > k + 6.

Threshold cryptosystems

Our deliver' routines at the different servers will employ a (k, n)-threshold cryptosgstem. A (k, n)-

threshold cryptosystem is, informally, a method of generating a public key and n shares of the

corresponding private key in such a way that for any message m encrypted under the public key,

each share can be used to produce a partial result from the ciphertext of m, where any k of these

partial results can be combined to decrypt m. Moreover, knowledge of k shares should be necessary

to decrypt m, in the sense that without the private key it should be computationally infeasible

to (i) decrypt m without k partial results for m, (ii) compute a partial result for m without the

corresponding share, or (iii) compute a share or the private key without k other shares.

As with threshold signature schemes, cryptanalytic attacks against threshold cryptosystems

differ from those against conventional public key cryptosystems in that they may involve the use

of partial results and some number of shares, in addition to plaintext/ciphertext pairs. For our

purposes, we will say, informally, that a (k, n)-threshold cryptosystem is secure if it satisfies the

following properties:

1. Possession of only k - 1 or fewer shares and of partial results for various ciphertexts does not

facilitate decrypting new ciphertexts. That is, if a possessor of such information can decrypt
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a new ciphertext, then it could also decrypt that ciphertext without knowledge of any shares

or partial results for any ciphertexts. This property, which is formalized in (111, says that the

threshold cryptosystem is as secure as the conventional cryptosystem on which it is built.

2. The conventional cryptosystem on which the threshold cryptosystem is built is resistant to

known plaintext attacks. That is, the cryptanalyst cannot manage to decrypt given cipher-
texts even though it can see the plaintext corresponding to various other ciphertexts (but not

corresponding to ciphertexts of its choice, as would be possible in a chosen ciphertext attack).

This definition is in accordance with the security of all implementations of threshold cryptosystems
thus far proposed, in the sense that all proposed implementations are based upon conventional

cryptosystems that are known to be vulnerable to chosen ciphertext attacks.

Because the acts of signing a message and decrypting a message are operationally identical in
the RSA signature scheme and cryptosystem, one implementation of a (k, n)-threshold cryptosystem

can be obtained directly from the (k, n)-threshold signature scheme described in section 4. Messages

would be encrypted under the public key (e, N) of the service in the usual manner, and the i-th

partial result for an encrypted message m - (m')e mod N would be defined precisely as in section
4-i.e., am, i = mK , mod N. Then, m' - Am,T -m • tT(am,)PsT for any T of size k. Other

implementations of threshold cryptosystems have been proposed, based upon both the RSA and

ElGamal [9] cryptosystems [6, 16].

The protocol

Suppose that we are using the RSA threshold cryptosystem described above and that we have the
initial conditions assumed in section 4; i.e., server si is secretly given sole possession of Ki, any

principal can reliably obtain the public key (e, N) of the service, and all servers know (a priori) PiT

for all i and T. The basic idea of our protocol is that each client c encrypts the contents m of its

request with the public key of the service, in an attempt to force k servers to cooperate to decrypt it.
Then, each correct or honest server refrains from broadcasting its partial result for (the ciphertext

of) m until the delivery sequence through (c, m) is fixed locally. In this way, if corrupt < k, then

once a corrupt server collects k partial results for m, the sequence of requests through (c, m) has

been fixed at some, and thus all, correct servers, and no requests can be placed before (c, m) in the

delivery sequence at correct servers.

This protocol preserves Causality iff each server requires k partial results for rn to decrypt m.
Even under the assumption that this cryptosystem is secure, however, this unfortunately is not the

case with this or any proposed implementation of a (k, n)-threshold cryptosystem. The problem

is that our protocol as described above allows a corrupt server to mount chosen ciphertext attacks,

against which neither the RSA nor the ElGamal cryptosystem (nor any threshold cryptosystem based
upon them) is resistant. In our setting, a corrupt server can see at any time how any ciphertext m of
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its choosing is decrypted, by simply requesting that a corrupt client c issue (c, m) as an apparently

legitimate request to the service. The corrupt server can then collect k partial results for m to see

the plaintext to which m decrypts.

Methods of using chosen ciphertext attacks against the RSA and ElGamal cryptosystems are
well-known. Here we illustrate one method, originally due to Moore (see [5]), by which a corrupt

server can decrypt the RSA ciphertext m = (m')e mod N in a correct client's request (c, m) without
waiting to receive k partial results for m.

I. The corrupt server chooses an arbitrary z and computes y S z e mod N; i.e., z = yd mod N.7

2. Via a corrupt client, the corrupt server issues a request with contents ym mod N to the service.

3. The corrupt server collects k partial results for ym mod N and forms (ym)d mod N.

4. The corrupt server computes x-= y=-d mod N, and then

X-I(ym) d = y-dYdmd = m d = (mI)ed = m' mod N.

(NB: If x does not have an inverse mod N, then the corrupt server can factor N because
gcd(z, N) is a prime factor of N.)

Similar attacks are possible with the threshold cryptosystems described in [6, 16].
Ideally, we would like to find a threshold cryptosystem based on a conventional public key

cryptosystem that is tolerant of chosen ciphertext attacks. As already mentioned, however, no such
threshold cryptosystem has been proposed, and even conventional public key cryptosystems that are

tolerant of such attacks (e.g., (81) are highly impractical. Therefore, such attacks must be prevented.

A simple way to do this is to have each client use a separate public encryption key for the service.
That is, the public key for the 1-th client cl would be a pair (el, NI), and each server si would be
given a share K,, for use when cooperating to decrypt a request from client cl. This prevents chosen
ciphertext attacks against the keys and ciphertexts of correct clients, because any request received

from a corrupt client will be decrypted using the shares of the key for that client, and not a correct
one. The practical ramifications of this design, as well as ways to improve it in practice, are discussed

in section 6.

The one remaining problem in our protocol is that corrupt servers can provide incorrect partial
results that may disrupt the decryption process. Therefore, it must be possible for a server to
determine when it has properly decrypted a request. To facilitate this, clients are required to send

7The obvious form of this attack, in which z a ya I mod N, could easily be made unproductive for the cormpt
server: if each correct client signs the contents of its request before encrypting it and each correct server delivers a
request on behalf of the client whose signature appears on the decrypted contents (and not necessarily the client that
issued the request), then by issuing a request containing m, the corrupt sere only expedites the delivery of the conet
client's request.
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with each request a message digest of the request. Message digests have the property that the message

digest of a given message can be computed efficiently, but it is computationally infeasible to produce

two messages having the same message digest or to produce any message having a prespecified

target message digest. Accordingly, we henceforth assume that the included message digest uniquely

identifies, but does not disclose, the contents of the encrypted message, and that the joint use of

message digests and the threshold cryptosystem does not reveal information that a cryptanalyst

could use to circumvent the properties of either one. The validity of this assumption obviously

depends on the chosen implementation of message digests. We also note that if the message digest

function is injective, a message digest does, in fact, uniquely identify a message.8 Several efficient

implementations of message digest functions have been proposed (e.g., [23]) but will not be discussed

here. Let digest(m) denote the message digest of m.

Then,.the request' and deliver' routines execute as follows.

Routine request'(m) at client cl:

1. Create the RSA ciphertext m' =- mel mod NI and message digest D = digest(m) of m.

2. Execute request((m', D)).

Routine deliver'((cj, m)) at server si:

1. If m is not of the form (m', D), then return to the calling routine.

2. Execute abcast(a,,,), where a,, ,i - (m')K.I mod NI.

3. Wait until the first k + b partial results {am,j}ejT, ITI = k + b, for rn' have been received

(from k + b unique servers).

4. Search for a subset T' C T of size k such that digest(Am',T,) = D. If such a T' exists and

Am,T, is a valid request, then execute deliver((cl, A,.',T,)).

Claim 3 This protocol satisfies Delivery Atomicity, Delivery Order, and Delivery Consistency.

Proof. (Delivery Atomicity) By Delivery Atomicity of *D, for each client request deliver' is either

called exactly once at all correct servers or never called at any correct server. Clearly a request of the

latter type is never delivered at any correct server, and so now consider a request (c, in), m = (m', D),

of the former type. If only fewer than k + b partial results for m' are received at correct servers, then

the request will never be delivered at any correct server. So, suppose that k + b partial results for m'

are received at all correct servers. By Receipt Order of IZ, all correct servers employ precisely the

same set {ampJ}jET, ITI = k + b, of partial results when attempting to decrypt m'. Therefore, one

$One such implementation employs a deterministic public key cryptosystem: the digest for a message is computed
by encrypting the message under an a priori, commonly known public bey, for which the corresponding private bey has
been destroyed and is not known.
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correct server delivers some request iff all correct servers do, and all correct servers deliver the same

request, assuming that D uniquely identifies a single request.

(Delivery Order) By Delivery Order of D, all correct servers execute the same sequence of deliver'

calls. And, because any call to deliver' returns before deliver' is called again, it follows from the

argument for Delivery Atomicity that all correct servers execute the same sequence of deliver calls.

(Delivery Consistency) By Delivery Consistency of D, the sequence of deliver' calls at an honest
server is a prefix of the sequence of deliver' calls at a correct server. Moreover, because the sequence
of messages received at an honest server is a prefix of the sequence of messages received at a correct

server (by Receipt Consistency of JZ), if the honest server receives sufficiently many messages, it will

use the same set fam,,j}JET, ITI = k + b, of partial results to decrypt each request as the correct

servers do. Thus, the sequence of requests delivered at an honest server will be a prefix of the

sequence of requests delivered at a correct server. 3

Claim 4 A correct server delivers a request from a correct or honest client c only if c previously

issued that request. (That is, the first half of Delivery Validity holds.)

Proof. This follows immediately from the fact that, by Delivery Validity of V, if c is correct or

honest, then deliver'((c, m)) is called at a correct server only if c issued the request (c, m). 0

Claim 5 If correct > k + b, then if a correct client issues a request, it will be delivered at all correct

servers. (That is, if correct > k + b, then the second half of Delivery Validity holds.)

Proof. If correct > k + b, then for each call to deliver' at correct servers, at least k + b partial results

are broadcast by and, therefore, received at all correct servers. So, at a correct server, each call to
deliver' eventually returns; i.e., the service makes progress. This, together with Delivery Validity of

1D, implies that for any request (c, m), m = (m', D), issued by a correct client c, deliver'((c, n)) is
eventually executed at all correct servers. Since the k + b partial results used to decrypt m' contain

at least k partial results from correct and honest servers, m' can be decrypted and delivered. C

From the above claims, we immediately have the following.

Claim 6 This protocol satisfies the specification of atomic broadcast (for client requests) whenever

correct > k + b.

We now prove that the above protocol satisfies Causality.

Claim 7 If the threshold cryptosystem is secure, then this protocol satisfies Causality.

Proof. Suppose that the threshold cryptosystem is secure and corrupt < k. Then, the earliest point

at which the ciphertext m' in a request (c, m), m = (m', D), from a correct client c can be decrypted
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anywhere is sometime after some correct or honest server broadcasts its partial result for m'. Let

s be the first correct or honest server to broadcast its partial result for m'. By Delivery Order and

Delivery Consistency of V, all correct servers eventually execute (possibly an extension of) the same
sequence of deliver' calls that s executes. Therefore, all correct servers will execute deliver'((c, mi))

before deliver'((Z, in)) for any (j, fh) issued after m' was decrypted. If all correct servers deliver (the
plaintext corresponding to) m', then Causality is satisfied. Moreover, because c is correct, the only
way in which m' could not be delivered at all correct servers is if the correct servers never receive k + b

partial results for m'. In this case, the deliver'((c, m)) call at each correct server will never return,

and no more requests will be delivered at any correct server, thus trivially satisfying Causality. 0

Discussion

In a failure-free run, the replacement of deliver with deliver' results in an additional n executions of

R (i.e., abcast), which can be executed concurrently. Thus, when this protocol is used to disseminate

client requests and the protocol of section 4 is used to sign responses, the total message complexity

is 2n + 1 broadcasts (n of which can be reliable only; see section 4) plus the number of responses,

structured in four communication phases. It is worth noting that if, e.g., the same value for k is

chosen for both protocols, then Availability can be guaranteed only if correct > k + b, and so the

number of servers designated to respond to each request should be reduced to min t+1, n-(k+b)+l.

As in the protocol of section 4, step 4 of deliver' is potentially expensive, because it may require

a server to sort through (ktb) subsets of partial results to be able to decrypt a request. In fact, a

corrupt client can force each server to sort through (k+b) subsets by sending a ciphertext and digest

that do not "match." As before, we rely on heuristics, a small (kt+b), and a small corrupt in the

common case to reduce the expected cost of decrypting requests from correct clients. A bad request

from a corrupt client can be detected in a reasonable amount of time if (k~b) is small, and then

subsequent requests from that client can be ignored. We reiterate, however, that we do not expect

the cost of decrypting requests to be a limiting factor in most systems, and so while we are pursuing

additional optimizations to this process (see appendix A), we do not view this as essential.

Assuming that service responses are verified at all clients with a single public key but that

each client that desires Causality has an additional public encryption key for the service, each client

possesses at most two public keys for the service. Each server now possesses one key share per client

desiring Causality, in addition to the key share with which it cooperates to sign responses and the

O(n log n) bits of public information needed for computing the Pi,T's. (The same pi,T's can be used

for all instances of the signature scheme and cryptosystem.)

Finally, we note that while this protocol prevents a potentially serious attack arising from

violations of causality, it does not necessarily address all such attacks. A further examination of the

relationship between security and causality is a topic of ongoing research.
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6 Implementation issues

As mentioned in section 1 and discussed further in appendix B, we intend to use the techniques

of sections 4 and 5 in a secure version of the Isis distributed programming toolkit. In this section

we comment on three practical issues that bear on the implementation and use of our protocols.

We do not discuss all relevant issues; several important problems, such as the periodic changing of

keys or the distribution of key shares, have purposely been omitted from discussion because they

are similar to problems encountered in other cryptographic systems and can be solved using known

techniques. Instead, our comments here are restricted to issues that may not be pertinent to most

other cryptographic protocols.

Atomic broadcast

As previously described, our protocols assume the existence of an underlying atomic broadcast pro-

tocol, whose specification is given in section 3. It is well-known, however, that it is impossible to find

a deterministic solution to consensus, and thus atomic broadcast, in an asynchronous system that

can suffer even a single crash failure [10]. While at first this may appear to diminish the usefulness

of our protocols, several systems (e.g., Isis [21 and Amoeba [15]) have successfully circumvented this

impossibility result for all practical purposes.

In the short term, systems such as these appear to be the most promising platforms for imple-

menting our protocols. The idea is that the communication modules of servers would be implemented

using, e.g., the Isis atomic multicast primitives. Because the protocols used by Isis are tolerant of

only benign failures, however, additional precautions would need to be taken to insulate the Isis

protocols from an intruder. In many systems this could be achieved by running Isis as part of the

operating system of each server site and then using secure boot procedures and physical security

to protect the integrity of site operating systems. These measures, when coupled with the security

mechanisms of [22] to defeat network intruders and to prevent unauthorized sites from participat-

ing in the protocols, should make the Isis protocols sufficiently robust for most environments. The

coordination and application modules of servers could then run as application processes, so that

even if some were corrupted or replaced (e.g., because their owners' passwords were guessed) the Isis

protocols would remain intact.

In extremely hostile environments, however, it may be impossible to protect all server sites from

corruption, and thus the above approach may not suffice. In this case, atomic broadcast protocols

tolerant of Byzantine failures (with authentication) are required. Protocols that suffice for various

definitions of honest have already been implemented (e.g., [41) for synchronous systems, i.e., systems

in which there are known bounds on message transmission times and execution speeds of (correct)

processes. With such a protocol, only the subsystem of servers must be synchronous, because an

atomic broadcast protocol for client requests can be implemented using an atomic broadcast protocol
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for the servers alone, as outlined in section 3. Thus, this approach might be feasible in a situation
where the servers can communicate by a highly reliable and predictable network, but where the clients

are more widely dispersed and unable to communicate with the servers by such predictable means.

Moreover, if the subsystem of servers is synchronous, then our protocols can be improved: e.g., the

protocol of section 5 can easily be modified so that it is live if correct >_ k. There has been little
work on Byzantine atomic broadcast protocols for partially synchronous and asynchronous systems.
However, in a recent private communication, T. D. Chandra described a method to transform any
solution to Byzantine consensus9 into a solution to Byzantine atomic broadcast.

Public encryption keys

Recall that the protocol of section 5 requires that each client have a different public encryption key

for the service, in order to prevent a corrupt server from mounting chosen ciphertext attacks against
correct clients' ciphertexts or keys. In general, having separate cryptosystem parameters for each

client may require that each client be individually "registered" with the service before using it, so
that the client can obtain a public key for the service and the administrator of the service can provide
to the servers the shares necessary to decrypt this client's requests. While this could limit the settings

in which our protocols can be used, we believe that this is not unreasonable if maintaining causality

among client requests is a substantial concern.

Nevertheless, in practice it may be possible to relax the requirement that each client have its
own public encryption key for the service. For instance, if a group of clients mutually trust one
another to not participate in chosen ciphertext attacks against one another, then the members of
that group might choose to use the same public encryption key for the service. To illustrate this,

recall the trading service example of section 5. Assuming that a broker will not cooperate in chosen

ciphertext attacks against other brokers in the same firm, all brokers in a single firm could use the

same public encryption key for the service. This would clearly simplify key management: e.g., after
a firm authorized a new broker to issue requests to the service on its behalf, each server could use

its share of the private key corresponding to the public key given to that firm when cooperating to
decrypt a request from that broker. In this way, the addition of a new client (i.e., broker) need not

require the generation of a new public key/private key pair or the secure distribution of new private

key shares to the servers. Another way in which the requirement that each client have its own public

encryption key could be relaxed is described in the following subsection.

Detection of corrupt principals

One resource that we have not fully exploited in our protocols is the ability to detect corrupt prin-
cipals based on messages received from those principals. Such techniques have been used, e.g., in

*Due to [10], any solution to Byzantine consensus in an asynchronous system must be randomized [3].
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numerous Byzantine agreement protocols to isolate faulty principals. In practice, methods to detect

and quarantine corrupt principals could be used to deter such principals from mounting attacks and

to improve overall system performance.

One example of how a corrupt client can be detected was given in section 5: if a correct server
executes deliver'((c, m)), where m = (m', D), but in step 4 of deliver' there is no set T' of size k
such that digest(An,T,) = D, then c must be corrupt. In particular, the chosen ciphertext attack
illustrated in section 5 would lead to the detection of the corrupt client, because that client could

not compute digest((ym)d mod N) without knowing (ym) d mod N. This technique, moreover, would
detect any client issuing any ciphertext for which it did not know the corresponding plaintext. If
this threat of detection is believed to be sufficient to deter chosen ciphertext attacks, then all clients

could be allowed to use the same public encryption key for the service.

Our protocols could also benefit from techniques to detect corrupt servers. For instance, in
appendix A we describe several improvements to our protocols that would result from the ability to

detect when a server has provided an incorrect partial result. Other detection techniques and ways
to exploit them are topics of ongoing research and will not be discussed further here.

Summary

While the requirements that an underlying atomic broadcast protocol be available and that each

client use a different public encryption key may seem to reduce the practicality of our protocols,

in many real systems these will not constitute substantial restrictions. We have described several

approaches to implementing atomic broadcast, as well as methods for relaxing the requirement that
each client have its own public encryption key for the service. We believe that, when combined with
techniques to detect and isolate corrupt principals, our protocols can be applied in many types of

systems to achieve efficient, fault-tolerant, and secure service implementations.

7 Related work

This work was largely inspired by [12], which presents a replicated, shared key authentication ser-

vice. The authentication service described there allows two principals to establish a secret, shared
encryption key provided that for some prespecified value k, at least k servers are correct and fewer

than k servers are corrupt. The method discussed in the present work cannot immediately be applied
to construct such a service, because of the additional secrecy requirements. However, our method

can be used to construct an analogous public key authentication service that has the additional

advantage that, unlike the service described in [121, a client need only possess at most two keys for
the service, and not one for each server.

Using the state machine approach to construct services tolerant of arbitrary failures with au-
thentication was first considered in [17]. Since then, other authors have focused on secure replication
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of data. Secure data replication using quorum methods is considered in [141 for the case in which
both data integrity and secrecy are important. In these schemes, however, an intruder that corrupts
a client may also be able to compromise the integrity and secrecy of all data. Moreover, clients are
expected to be able to authenticate data repositories. In [20], a space-efficient information disper-
sal algorithm is developed to facilitate the provision of data integrity and availability. The scheme
decomposes a file F into n pieces, each of size IFI/l, such that any I pieces suffice to reconstruct F.

8 Conclusion

We have presented a method for securely replicating services using the state machine approach.
Using our technique, a service can be replicated as n servers in such a way that for some prespecified
parameter k, a client will accept a response computed by a correct server provided that corrupt < k
and correct > k. We have also addressed the issue of maintaining causality among client requests.
A security breach resulting from an intruder's ability to violate causality was illustrated, and a safe
and live approach, which requires that corrupt < k and correct > k + b, was presented to counter
this problem. An important and novel feature of our methods is that they free the client of the
responsibility of learning the identity and public key of each server. This is achieved by employing two
recent advances in cryptography, namely threshold cryptosystems and threshold signature schemes.
Moreover, we have argued for the feasibility of our techniques through a discussion of several issues
pertinent to their implementation and use.
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A Verifiable threshold cryptography

In this appendix we identify several improvements to our protocols that would result from the

discovery of verifiable threshold signature schemes and cryptosystems. For our purposes, a verifiable

threshold signature scheme or cryptosystem is one with additional properties that would enable

correct and honest servers to efficiently detect whether a server produced its partial result correctly.

We discuss the impact of verifiable schemes on our protocols only in an appendix because to our

knowledge there are no known, practical implementations of such schemes. However, such schemes are

analogous to verifiable (conventional) threshold schemes, which have received substantial attention

in the literature (see, e.g., [21]).

We abstractly capture the verification aspect of verifiable signature schemes and cryptosystems

by postulating a predicate ok such that ok(m, i, a,,i) is true iff (with a very high probability)

a,mi is ei's correct partial result for m. For instance, in the RSA implementatiun described in

section 4, ok(m, i, a,.,j) would be true iff a,,i mK mod N. Similarly, when the RSA threshold

cryptosystem is used to decrypt a request m from a client cj as in section 5, ok(m, i, am,,) would be

true if am,,i = m',a mod NI. We assume that ok can be evaluated efficiently (and in polynomial

time) in our system model at all correct and honest servers. Depending on the implementation, this

evaluation may require the servers to be given additional a priori information or to communicate

additional information via existing protocol messages or additional phases of communication. Of
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course, we also require that this additional information does not compromise the security of the

threshold signature scheme or cryptosystem.

Given the predicate ok, our protocols can then be modified as described below. In the following

descriptions, rbcast is a reliable broadcast primitive provided by servers' communication modules

that replaces the stronger abcast primitive. (If R is used to implement D as described in section 3,

however, then abcast must still be available to the servers.)

Routine respond'(c, m) at server si:

1. Execute rbcast(am,s), where ami - mK, mod N.

2. Wait to receive a set {am 4 }jET, ITI = k, of partial results for m such that for each j E T,

ok(m,j, am,j) is true.

3. Execute respond(c, (m, Am,T)).

The routine accept'(m) remains the same.

Routine request'(m) at client cl:

1. Create the RSA ciphertext m1 = m1 mod N of m.

2. Execute request(m').

Routine deliver'((cl, m)) at server s,:

1. Execute rbcast(a,,,,), where a,, a mKi.1 mod N1.

2. Wait to receive a set {anj}jET, ITI = k, of partial results for m such that for each j E T,

ok(m,j,aa,j) is true.

3. If A,,,T is a valid request, then execute deliver((cl, AMT)).

It was already noted in section 4 that reliable broadcast could be used to disseminate partial
results in the respond' routine. So, the key improvement resulting from the use of ok in that routine

is the elimination of the (worst case) exponential search for a correct signature from step 2. Similarly,

the exponential search to find a set of partial results that will properly decrypt a req test has been

eliminated from deliver'. Reliable broadcast can now be used to disseminate partial results in deliver'

because all correct servers will use a set of k correcl partial results to decrypt each request, and thus

are no longer required to attempt decryption with the same sets of partial results. Also, clients no

longer need to include message digests in their requests, again because correct servers will always
use k correct partial results to decrypt each request. Finally and most importantly, Claims 5 and 6

can be strengthened respectively to:

Claim 8 If correct 2 k, then if a correct client issues a request, it will be delivered at all correct

servers. (That is, if correct > k, then the second half of Delivery Validity holds.)
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and

Claim 9 This protocol satisfies the specification of atomic broadcast (for client requests) whenever

correct > k.

That is, iveness is guaranteed if correct > k. It is not difficult to verify that the other claims of

sections 4 and 5 hold as stated.

Obviously the introd,,ction of verifiable schemes would yield substantial benefits in our protocols.

The investigation of possible verification algorithms is an important direction of ongoing research.

B The Isis security architecture

As mentioned in sections 1 and 6, the techniques developed in this paper are intended to be used in the

Isis system, which is a toolkit for developing secure, highly reliable distributed applications. In this

appendix, we outline the architecture of a new version of Isis that will incorporate the mechanisms

of this paper, focusing on the Isis security architecture and the degree to which it supports the

assumptions made in this paper.

The Isis project began in 1985 as an effort to develop a collection of tools for building highly

reliable distributed software. Since its inception, the focus of the project has been on supporting
loosely coupled distributed applications that must provide strong consistency guarantees despite

component failures and recoveries. Put simply, Isis is oriented towards applications in which the

actions taken by one system component must be coordinated with the actions taken by other sys-
tem components. To this end, Isis provides to the programmer two basic building blocks: virtually

synchronous process groups and atomic, causally ordered group multicast. Using these mechanisms,

a number of higher-level tools are provided, including mechanisms for managing replicated data,

synchronization, monitoring the status of system components, reconfiguring to recover from failures

or overloads, parallel computation, primary-backup computation, and so forth. A still higher level
of software provides highly reliable services, such as a fault-tolerant network file system, a network

resource manager and load-balancing system, a wide-area messaging system, and a programming

environment for instrumenting distributed applications and developing reliable reactive control sys-
tems. Isis has become widely popular and is currently used by hundreds of academic, commercial

and military researchers and development efforts.

Initially, Isis did not address questions of distributed security. However, starting in 1991, an effort

to reimplement the Isis system from the bottom up was initiated. Introduction of a comprehensive

security architecture has emerged as one of the major thrusts of this activity, along with the adoption

of a micro-kernel design philosophy and greater attention to performance and real time.

Until the present, the basic goal of this security work has been to guarantee the correct behavior

of the Isis system abstractions in the face of various forms of malicious attack. Informally, a system
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is viewed as a set of "islands" of trusted sites surrounded by potentially hostile agents to which the

system provides services, but against which it must protect itself. In [22], we showed the feasibility of

guaranteeing the integrity of the basic Isis services in such an environment, but under the assumption

that within any process group, all member sites would be equally trusted and capable of initiating
actions on behalf of the group as a whole. Thus, the presence of even a single corrupt site within a
process group could lead to arbitrary security violations within that group. Despite the limitations

of this model, we view the Isis security architecture as a significant advance in several respects; in

particular, we believe the new Isis to be among the first systems capable of simultaneously assuring
substantial degrees of both security and fault-tolerance. Implementation of the security architecture

is now underway, and we expect to have detailed performance figures by early 1993.
It is our intention to implement the methods of the present paper as a security "tool" within this

new version of Isis, in addition to using them to implement key Isis services. Such a tool would offer

a number of practical benefits. First, it would facilitate the implementation of highly fault-tolerant
services that could withstand the corruption of some server processes. Second, due to the feature that

clients need not be able to identify or authenticate individual servers, service administrators could

reconfigure services, possibly even changing the number and identity of servers, without affecting

clients. This feature may also allow non-replicated services in existing systems to be transparently

replaced with secure, replicated service implementations.

The implementation of these techniques in the Isis system does involve tradeoffs, however, be-

cause the system model supported by the Isis security architecture differs in important ways from

that assumed in section 3. The primary difference was already mentioned in section 6, namely that
the atomic broadcast protocol assumed in section 3 is resilient to more hostile failures than the Isis

atomic broadcast protocol. Recall that we suggested one way to compensate for this difference, which

involved protecting the Isis protocols within site operating systems via secure boot procedures and

physical measures. This approach represents a compromise that we view as necessary for practicality

(for the time being) and sufficient for most systems, albeit at a cost to the security of our solutions.
To summarize, our technique for securely replicating services has practical application in the

Isis system, which is now being reimplemented to include a security architecture. This security

architecture goes a long way toward supporting the assumptions enumerated in section 3, and with a
few additional limitations on the failure modes that can be tolerated, will provide a viable platform for

the implementation of the techniques described in this paper. We hope to report on our experience
with the new Isis syste~i, including the implementation of these techniques, within one year to

eighteen months.
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